午夜av成人-激情综合一区二区三区-四虎影在永久在线观看-亚洲爱爱网站-人人爽人人澡人人人妻-亚洲欧美日韩国产综合

歡迎光臨~泰州巨納新能源有限公司
語言選擇: 中文版 ∷  英文版

鈣鈦礦

  • 鈣鈦礦材料
  • 鈣鈦礦材料
  • 鈣鈦礦材料
  • 鈣鈦礦材料
  • 鈣鈦礦材料
  • 鈣鈦礦材料
鈣鈦礦材料鈣鈦礦材料鈣鈦礦材料鈣鈦礦材料鈣鈦礦材料鈣鈦礦材料

鈣鈦礦材料

Luminosyn? DPP-DTT (also referred to as PDPP2T-TT-OD) is now available featuring:

High molecular weight - higher molecular weight offers higher charge mobility

High purity - DPP-DTT is purified via Soxhlet extraction with methanol, hexane and chlorobenzene under an argon atmosphere

Batch-specific GPC data - so you have confidence in what you are ordering. Also, GPC data is always convenient for your thesis and publications

Large quantity orders - so you can plan your experiments with polymer from the same batch

價格

Batch

Quantity

Price

M315

100 mg

4800.45

M315

250 mg

8011.45

M315

500 mg

12635.29

M315

1g

20871.50

M315

2g

36926.50

*for 5 - 10 grams order quantity, the lead time is 4-6 weeks.

Batch Details

Batch

Mw

Mn

PDI

M314

292,200

74,900

3.90

M315

278,781

76,323

3.65

General Information

Synonyms

PDBT-co-DTT

PTT-DTDPP

PDPP-DTT

DPPT-TT

DPP-TTT

PDPP2T-TT

PDPP2T-TT-OD

DPPDTT

Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)]

CAS number

1260685-66-2 (1444870-74-9)

Chemical formula

(C60H88N2O2S4)n

HOMO/LUMO

HOMO = -5.2 eV, LUMO = -3.5 eV [2]

Solubility

Chloroform, chlorobenzene and dichlorobenzene

Classification/Family

Bithiophene, Thienothiophene, Organic semiconducting materials, Low band-gap polymers, Organic photovoltaics, Polymer solar cells, OFETs

Chemical structure and product image of DPP-DTT, CAS No. 1260685-66-2.

OFET and Sensing Applications
The exceptional high mobility of this polymer of up to 10 cm2/Vs [2] via solution-processed techniques, combined with its intrinsic air stability (even during annealing) has made PDPP2T-TT-OD of significant interest for OFET and sensing purposes.

While the highest mobilities require exceptional molecular weights of around 500 kD (and with commensurate solubility issues), high mobilities in the region of 1-3 cm2/Vs can still be achieved with good solution-processing at around 250 kD. As such, we have made a range of molecular weights available to allow for different processing techniques.

In our own tests, we have found that by using simple spin-coating onto an OTS-treated silicon substrate (using our prefabricated test chips), high mobilities comparable to the literature can be achieved  (1-3 cm2/Vs). Further improvements may also be possible with more advanced strain-inducing deposition techniques.

Example OFET characteristics for DPP-DTT (M313) solution processed from chlorobenzene on a 300 nm SiO2 substrate treated with OTS. Output characteristic (top left), transfer curves (top right), mobility fitting (bottom left) and calculated mobility (bottom right).

Photovoltaic Applications
Although shown as a promising hole-mobility polymer for OFETs, when used as the donor material in a bulk heterojunction photovoltaic (with PC70BM as the acceptor), initial efficiencies of 1.6% were achieved for DPP-DTT [3]. The low device metrics were attributed to poor film morphology. However, a higher efficiency of 6.9% was achieved by using thicker film (220 nm) [4].

PDPP2T-TT-OD has also recently been used successfully as an active-layer dopant material in PTB7-based devices [5]. An improvement in device performance was observed, with average efficiencies increasing from 7.6% to 8.3% when the dopant concentration of DPP-DTT was 1 wt%. The use of DPP-DTT as a high-mobility hole-interface layer for perovskite hybrid devices has also been investigated [6].

Synthetic route
DPP-DTT synthesis: DPP-DTT was synthesised by following the procedures described in [2] and [3] (please refer to the following references):

With 2-thiophenecarbonitrile and dimethyl succinate as starting materials in t-amyl alcohol, it gave 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione. Alkylation of 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione with 2-octyldodecylbromide in dimethylformamide afforded 3,6-bis(thiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione. Further bromination gave 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (M1).

Further reaction of M1 with 2,5-bis(trimethylstannyl)thieno[3,2-b]thiophene (M2) under Stille coupling conditions gave the target polymer DPP-DTT, which was further purified via Soxhlet extraction with methanol, hexane and then chloroform.

具體價格請咨詢在線客服

用手機掃描二維碼關閉
二維碼
主站蜘蛛池模板: 久久熟女五十路一区二区| 一区 在线 日本| 精品无码免费专区毛片| 久久婷婷五月综合色国产香蕉| 亚洲va欧美va国产综合| 超薄丝袜足j好爽在线| 久久亚洲国产成人精品性色| 久久综合久久久久88| 国产成人精选在线观看不卡| 性欧美俄罗斯极品| 国产亚洲欧美日韩二三线| 久久亚洲欧美国产精品| 特黄特色大片免费播放| 久久99国产综合精品免费| 被三个男人绑着躁我好爽| 自偷自拍亚洲综合精品麻豆| аⅴ资源中文在线天堂| 最新69国产成人精品视频| 在线日韩日本国产亚洲| 一边摸一边做爽的视频17国产| 一区二区三区午夜无码视频| 亚洲国产精品自在在线观看| 亚洲国产成人资源在线| 亚洲成av人在线播放无码| 无码福利在线观看1000集| 欧美精品一区二区三区卡| 国产一区二区三区国色天香| 国产精品亚洲а∨无码播放麻豆| 国产免费午夜福利片在线| 国产成人亚洲精品无码不卡| 亚洲日韩欧美国产高清αv| 国产福利一区二区三区在线观看| 久久综合狠狠综合久久| 无码东京热一区二区三区| 少妇伦子伦精品无吗| 国产成人a亚洲精v品无码| 伊人久久大香线蕉综合5g| 亚洲乱亚洲乱妇无码| 私人毛片免费高清影视院| 欧洲丰满少妇做爰视频爽爽| 久久午夜福利影视一区|